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ABSTRACT 
We show that the Maharam skew product of/~-recurrent nonsingular endo- 
morphisms is conservative and give some applications. Among them is the 
construction of a conservative ergodic invertible natural extension for/~- 
recurrent ergodic nonsingular endomorphisms. 

1. Introduction 

In this paper we are concerned with noninvertible nonsingular transforma- 

tions acting on a-finite measure spaces. Our first result (Theorem 2) is a 

generalization, to noninvertible transformations, of a theorem of Maharam [9] 

on the conservativity of  a skew product. A direct consequence of  this theorem 

is an extension of a result of Krieger [8] (see also Schmidt [ 15], [l 6]) on the 

recurrence of the Radon-Nikodym derivatives of  conservative automor- 
phisms. We then use Theorem 2 to construct a conservative ergodic natural 

extension for/z-recurrent ergodic nonsingular endomorphisms. (A different 
invertible extension of  T, defined on X X [0, 1 ], was shown to the author by D. 
Maharam [10] in 1983. However, the proofs are entirely different and the 

extensions have different properties.) 
A transformation T: (X,/l) ~ (Y, v) is nonsingular provided/ l (T-tA ) = 0 if 

and only ifvA = 0. A transformation T o f a  a-finite measure space (X, ~ ,  p) is 

a nonsingular automorphism if it is invertible and T and T-  1 are measurable 

and nonsingular. For any integer n, pT" is a measure and there exist Radon-  

Nikodym derivatives ton(x) = d#Tn/dlt(x). We usually write to1 as to. One can 

show that the following relation holds a.e.: 

t Supported in part by a Williams College Faculty Research Grant. 
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(1) o)i +/(x) = o)j(x)~o,(TJx). 

A nonsingular endomorphism is a nonsingular transformation of  X onto 
itself such that T-IA is measurable whenever A is measurable. 

A nonnull set W is said to be wandering if T - '  W f~ W = ~ for n > 0. A 

nonsingular endomorphism is conservative (or incompressible) if it admits no 

wandering sets; it is measure preserving i f#T- IA =/z4 for all measurable sets 

A, and it is ergodic if whenever A is T-invariant, i.e. T -  IA = A, then A = 

(rood 0) or A = X(mod 0). We note that in the noninvertible case one can have 

ergodic transformations that are not conservative. In fact, let Sbe  defined on N 

by S(n) = n - 1, S(1) = 3, and let T be any irrational rotation of the unit 

interval I, then S × T acts ergodically on the product space with (non-atomic) 

product measure but is not conservative. 

The definition of nonsingular endomorphism does not require TA to be 

measurable. However, in most applications one deals with (the completion of) 

standard Borel spaces, and in this case the measurability of TA follows if one 

assumes/iN = 0 implies ItTN = 0. In fact, ifA ~ ~ then A = BAN where B is 

Borel and N isnull. Then TA = T(B - N) U T(N - B); since TB is analytic it 

is (completion) measurable and since T(B - N) differs from TB by a null set it 

is measurable. Nonsingularity gives that TA must be measurable. 

I would like to thank J. Aaronson, J. R. Choksi, J. King, D. Maharam, and 

R. M. Shortt for helpful and stimulating conversations at different stages of  
this work, and the referee for critical comments and remarks. I am indebted to 
the referee for calling my attention to reference [ 12] and suggesting the proof of  
Theorem 5. 

2. The skew product 

We recall the following skew product first introduced in [9]. Let T be a 

nonsingular automorphism of (X, #). Define 

X * = X × R  +, T * ( x , y ) = ( T x ,  y/o)(x)), and / t * = # × 2 ,  

where 2 is Lebesgue measure on R +. One can easily show that T* is measure 

preserving and that if T* is conservative, then so is T. In [9], Maharam proved 
the following theorem. 

THEOREM 1. [9] Let T be a nonsingular automorphism of  a a-finite mea- 
sure space (X, ~ ,  lz). T is conservative i f  and only i f  T* is conservative. 
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When T is an endomorphism,  / tT need not be additive, but if  we let 
= T - l ~ ,  then p T  is a a-finite measure when restricted to d ,  and is 

equivalent to /~. However ,  to apply the R a d o n - N i k o d y m  theorem it is 

necessary to assume that/~ is a-finite when restricted to the sub-a-algebra ~/. 

Henceforth in this paper, a nonsingular endomorphism is assumed to satisfy 

this property (this is trivially true when ~t is finite). In this case we define 

os(x) = dgT/d / l (x )  as an N-measurab le  function (cf. [3]). One defines the 

higher derivatives by 

coi(x) = co(x)co(Tx).  . . co (T i - l x )  (i > 1). 

Define now T*(x,  y)  = (Tx ,  y/co(x)), and let the measure on the product  space 

be p × 2. When T is invertible, T* is the original transformation.  
There is an alternative approach to this definition. Write ~0(x)= 

d ~ T - l / d p ( x ) ,  O(x) = ~0(Tx) and define T*(x,  y)  = (Tx ,  yO(x)). In order that ~0 

be finite a.e. it is necessary to assume that/~T-~ is a-finite on ~ (this is the 

same as assuming that p is a-finite on ~./). In general, write 

Ol(x) = O(x), O,+l(x) = O(x)O,(Tx) for i > 1. 

Since O(x) is .~-measurable,  by uniqueness of  the derivatives one can show 

that co(x) = l/O(x) a.e. 
One, o f  course, has the following lemma. 

LEMMA 1. T* is measure preserving on (X X R +,/~ × 2). 

We need a definition before stating our main result. A nonsingular endomor-  
phism T of (X, /1)  is said to be/z-recurrent if for every nonnegative measurable 

function g, Y,>=0 g(T'x)co,(x)  takes only the values 0 and ~ a.e. The following 
lemma is well-known but we outline a proof  since it is important  in the proof  of  

Theorem 3. 

LEMMA 2. I f  there exists a positive function f E L l ( X , # )  with 

E~>=of(T'x)co~(x) = ~ then T is iI-recurrent. Hence,  in finite measure,  #- 

recurrence is equivalent to E,>=0 co~(x) = oo. 

PROOV. Using the H o p f m a x i m a l  lemma ([6], [7]) as in the p r o o f o f L e m m a  

8.4 in [6] one obtains that for every integrable g >= O, Y~>=og(T~x)co~(x) = 0 or 

oo. The result for measurable g > 0 follows by approximation.  

We observe that when T is invertible, it is well-known that if it is conserva- 

tive then it is v-recurrent for any measure v equivalent  to/~; this is not so in the 
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noninvertible case, even in finite measure, as was shown by Tsurumi in [17]. 

Another example is given by the modified Boole transformation Tx = 
½(x-  x -t)  on the real line. One can verify that T preserves the Cauchy 

distribution 2(rr(1 + x2))- ~dx and hence is conservative. (T is even exact [1], 

[11] and hence mixing of all degrees [14].) If ~o(x) denotes the Radon-  

Nikodym derivative of T with respect to Lebesgue measure 2, by direct 

computation (or using the well-known fact that Boole's transformation 
x ~ x - x -  ~ preserves 2), one obtains that og(x) -- ½ and therefore that Tis not 
2-recurrent. 

Tsurumi's example, and the modified Boole transformation are examples of 
conservative nonsingular endomorphisms in finite and a-finite measure 

spaces, respectively, which are not 2-recurrent. However they both admit 

finite invariant measures. It would be of interest to find out whether ergodic 

conservative nonsingular endomorphisms not admiting a-finite invariant 

measures are/z-recurrent.* 

LEMMA 3. A ~z-recurrent nonsingular endomorphism is conservative. 

PROOF. Suppose there exists a wandering set W. From/z-recurrence it 
follows that the function Y,~=0 xw(T~x)to~(x) takes only the values 0 and ~ .  But 
since W is wandering, when x ~ W ,  T 'xq~W for i > O ,  hence 
Xi ~o Zw(T~x)o~(x) = 1, a contradiction. 

THEOREM 2. Let T be a nonsingular endomorphism o f  a a-finite measure 
space. T is ~z-recurrent i f  and only i f  T* is conservative. 

Theorem 2 clearly obtains Theorem 1 in the case when T is invertible. 
Before proceeding with the proof we need some definitions and a few 

technical lemmas. Firstly, let us say that a measurable set A is a sweep-out set 
for T i f i t  has positive measure and X = U,~0 T- 'A  (mod 0). The proof of the 

following temma is obtained by inducing on the set A. 

LEMMA 4. Let T be a measure preserving endomorphism o f  a a-finite 
measure space (X, It). I f  T admits a sweep-out set A o f  finite measure then T is 
conservative. 

t Added in proof. After submission of this paper, the author and Stanley Eigen have shown that 
any n-to-1 (n > 1) conservative ergodic endomorphism of a Lebesgue space admits an equivalent 
nonrecurrent measure. 
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LEMMA 5. Let T be a It-recurrent nonsingular endomorphism o f  a a-finite 

measure space. I f  g is a nonnegative finite measurable function such that 

g(x)  > g(Tx) to(x)  a.e. then g(x)  = g(Tx)o)(x)  a.e. 

PROOF. Define P b y  Pf(x) = f (Tx)o)(x) .  It follows that z~v=0 pk(g _ pg) = 

g - PU+ )g =< g. Hence Zk=0 ~ pk(g _ pg) < oo. Then It-recurrence implies that 

g - P g = O .  

We note that conservativity of  T alone is not sufficient in Lemma 5. In fact, 

i fg(x)  = Z~=0 o)i(x) < oo one can verify that g satisfies g(x)  = g(Tx)o)(x)  + 1. 

We introduce some temporary notation to be used in the following lemma. 

Let o)u denote the Radon-Nikodym derivative of  Twith respect to the measure 

It. We say that cocycles o~u and o~v are cohomologous if there exists a positive 

finite measurable function h such that o)uh = o)v(h o T). As in the invertible 

case, it is clear that cohomologous cocycles give rise to isomorphic skew 

products (see e.g. [15], Lemma 5.1). (We note that our notation for cocycles, 

cohomology, etc. is multiplicative - -  otherwise it agrees with that of  

e.g. [15].) The following lemma is well-known for invertible transformations 

(see e.g. [5]). 

LEMMA 6. Let T be conservative and suppose there exists a positive finite 

function F satisfying F(x)  = F(Tx)~o(x) a .e. Then T* is conservative. 

PROOF. Define an equivalent measure v by vA = fA FdIt. Then v is invar- 

iant and o)v = 1 a.e. Let h = 1/F. Then we have that o),h = o)vh o Tand  hence 

o9, and ogv are cohomologous (¢nu = o)). The skew product corresponding to # is 

T* and that corresponding to v is T+(x, y) = (Tx,  y) which is clearly conserva- 

tive. The fact that T* is isomorphic to T + completes the proof. 

LEMMA 7. Suppose T is conservative. Let .~ be the family of  all invariant 

sets o f  positive measure Z for which there is a function F such that 0 < F(x ) < 
and F(x)  = F(Tx)o)(x)  for x in Z.  I f  .T is nonempty then it has a maximal  

element (under inclusion). 

PROOF. By disjointifying, any countable union of  elements of  ;~ is in 

.~" (by conservativity, subinvariant sets are invariant). Since any (proper) 

chain of sets of positive measure is countable, it follows that any chain in 

has an upper bound in .T. Zorn's Lemma implies that there is a maximal 

element in .T. 

PROOF OF THEOREM 2. Suppose that T is It-recurrent. We break up the 
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proof into two parts. First assume that there is no T-invariant subset Z of 

positive measure for which there is a function F satisfying 0 < F(x) < vc and 

F(x) = F(Tx)tn(x) for a.e. x in Z. We shall apply Lemma 4 to (X*, #*, T*). Let 

f be a positive function in L~(X) and write A --- {(x, y): 0 < y < f ix)) .  Clearly 

A has finite measure. We claim that A is a sweep-out set for T*; then Lemma 4 

will obtain the theorem. To prove the claim define F(x)--  
sup~=o(f(T~x)wi(x)}. One can verify that F(x)>F(Tx)w(x) .  Let B = 

( x :F(x )  = oc} and Z = X - B; then Z c T-~Z and the conservativity of T 

(Lemma 3) implies T-  ~Z = Z. Lemma 5 applied to Trestricted to Z gives that 

F(x) = F(Tx)w(x) on Z, which contradicts the assumption unless #Z = 0. 

Thus B = X (mod 0) and A is a sweep-out set for T*. 

Now assume that there exists an invariant subset Z of positive measure with 

a positive finite function F satisfying 

F(x) = F(Tx)co(x) for a.e. x in Z. 

From Lemma 7, Z can be assumed maximal under inclusion. Then on X - Z, 

T satisfies the assumption of the first part of the proof and hence T* is 

conservative on ( X - Z ) * =  X * -  Z* ( X - Z  is subinvariant and hence 

invariant). It suffices to show that T* is conservative on Z*. Thus without 

loss of generality we can assume now that Z = X. Lemma 6 then applies and 

gives that T* is conservative. 

Now we show the converse. The conservativity of T* implies that for any 

nonnegative measurable function f*  in X*, Z,~of*(T*~(x, y)) takes only the 

values 0 or ov a.e. Given a nonnegative measurable function f in X put 

f*(x,  y) = ( l/y) f(x). Since f*(T*'(x, y)) = (1/y) f(T'x)wi(x) it follows that T 

must be p-recurrent. 

REMARK 1. The proof can be simplified somewhat when T is assumed 

ergodic. In this case the first part of the proof works under the assumption that 

there is no positive finite function F with F(x) = F(Tx)w(x); the second part 

remains the same but Lemma 7 and the argument connecting the two parts are 

not necessary. The idea of  putting the two parts together using Lemma 7 is 

from [91. 
It follows from Lemma 6 and Theorem 2 that if (T ,p)  admits such a 

function F as above then T is p-recurrent. However, the existence of an 

invariant measure v equivalent to p does not necessarily imply the existence of 

a function Fas  above since dp/dv need not be T - 1 ~  measurable. The question 
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of the existence of recurrent and nonrecurrent measures will be studied further 

in a subsequent paper jointly with Stanley Eigen. 

3. Recurrence 

We start with an extension of a theorem of Krieger [8] (see also Schmidt [ 15], 

[16]) on the recurrence of  the Radon-Nikodym derivatives of  conservative 

nonsingular automorphisms. (The argument in the first part of  the proof below 

also appears in [5] for the case ofinvertible transformations.) The (multiplica- 

tive) cocycle to is said to be recurrent (cf. [ 16]) if for any e > 0 and for almost all 

x there are infinitely many nonnegative integers i with I to~(x) - 1 I < e. 

THEOREM 3. Let T be a nonsingular endomorphism of  a a-finite measure 
space. I f  T is #-recurrent then to is recurrent. When the measure of  the space is 

finite, i f  to is recurrent then T is #-recurrent. 

PROOF. Suppose T is #-recurrent. Given e > 0 let c = 1 + e and A* = 

X × [1, c]. Then #*A* > 0. Since T* is conservative (Theorem 2), Poincar6 

recurrence for conservative nonsingular endomorphisms (see, e.g. [7]) implies 

that for almost all (x, y) in A ' a n d  for infinitely many integers i, T*i(x, y)EA*.  

From equation (1) one can see that T* i ( x , y )=(T ix ,  y/toi(x)). Thus, for 

infinitely many integers i, 

y/c < toi(x) < y. 

It follows that one can choose y ~ (1, c) almost arbitrarily so that for almost all 

x in X, ( x , y ) ~ A * .  To complete the proof take y E ( 1  + e/2, 1 + e). 
To show the converse assume #X < ~ .  If to is recurrent then the series 

Xi>=0 toi(x) must diverge to ~ a.e. Lemma 2 now completes the proof. 

When X is a-finite, even if T is invertible, one does not have the second part 

of  the theorem. In fact, let Tx = x + 1 be defined on the real line with 

Lebesgue measure, then to(x) = 1, but T is not conservative. 

We obtain a Halmos-Ornstein Jacobian theorem for nonsingular endomor- 

phisms as a direct consequence of  Theorem 3. The result with the inequality in 

the opposite direction from the one in the corollary below is known and does 

not need the #-recurrence assumption (see, e.g. [7], p. 20). However, for the 

other direction #-recurrence is needed as can be seen by considering the 

modified Boole transformation mentioned earlier. 
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COROLLARY 1. I f T  is a #-recurrent nonsingular endomorphism of  a a-finite 

mesure space and i f  to(x) <= 1 a.e. then to(x) = 1 a.e. 

PROOF. Suppose to(x) < 1 on a set of positive measure. The conservativity 

T implies that lim o9. (x) = 0 on a set of positive measure. But this contradicts 

Theorem 3. 

It clearly follows from Theorem 3 that i f l im toi(x) = 0 or lim toi(x) = oo a.e. 

then T is not #-recurrent. However we have the following. 

COROLLARY 2. I f  T is #-recurrent then co*(x) = lim sup to,(x) > O. When 

the measure o f  X is finite, i f  to*(x) > 0 then T is #-recurrent. 

PROOF. One can easily see that to*(Tx)to(x)= to*(x). It follows that 

B = (x : to*(x) = 0} is T-invariant. If#B > 0 then o9 restricted to B would not 

be recurrent, and thus T not/t-recurrent. Now assume X has finite mesure and 

to*(x) > 0. Then Zi>_o to,(x) = oo and thus T. is #-recurrent. 

Finally we mention another application of the idea in the proof of Theorem 

3. By applying the well-known Lemma 8 below to T*, and by arguing as in the 

proof of Theorem 3 one obtains the following Theorem 4. (In the case when T 

is invertible this is a well-known property of type IIIt nonsingular automor- 

phisms (cf. [5], [15]).) 

LEMMA 8. I f  the a-fnite measure space X is a topological space with a 
countable base such that every nonempty open set has positive measure, and i f T  
is a conservative ergodic measure preserving endomorphism of  X, then for 
almost every x in X the sequence { T"x : n >-_ 0} is dense. 

THEOREM 4. Let (X, ~ , # )  be a standard Borel space with a a-finite 
measure # on ~ giving positive measure to open sets. I f  T is a #-recurrent 

nonsingular endomorphism of  X such that T* is ergodic, then for almost every x 

in X the sequence {toi(x) : i >= 0} is dense in R + . 

4. Natural extension 

In this section we discuss an invertible extension for nonsingular endomor- 

phisms and some of its dynamical properties. As remarked in the introduction, 

a different extension has been obtained by D. Maharam. 

From now on we deal exclusively with standard Borel spaces (X, ~ )  (called 

separable standard Borel in [ 13]) with a (complete) a-finite measure # defined 

on them. 
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In [14], Rohlin constructed a natural (invertible) extension for finite mea- 

sure preserving endomorphisms. We outline his construction here and point 

out that it also works in infinite measure. 

Let T be a nonsingular endomorphism of (X, ~ , / t ) .  Define 

and T' : X' --- X' by 

x '  = : Txi+, = i >= O) 

T'(x,) = ( T x , )  = ( T x o ,  Xo, x , ,  . . 3 .  

Given A E ~  define cylinder sets in X' by A (k) = ( ( x i ) ~ X ' : x k E A ) .  Let ~ '  

consist of  all sets of the form A(k) for A E ~ and k > 0, and ~1 consist of  all sets 

of the form A (°) for A ~ ~ ;  both ~ and d '  are algebras (note that for i > k, 

A (k) = (T-~+kA)(')). Let ~ '  be the a-algebra generated by ~¢'; it follows that 

~ ' =  V~=o T ' i ~  '. A set in ~ '  that happens to belong to ~¢ will be called 

T-measurable. One has that (X', ~ ' )  is a standard Borel space ([ 14], Theorem 

V.2.5). (All this notation will be used throughout. We note that these defini- 

tions do not depend on any measure on X.) Assume now that T is a measure 

preserving endomorphism. Define a measure p '  on d '  by l t ' A  (k) = l lA .  It can be 

shown that/~' is countably additive and hence has a unique extension to a a- 

finite measure/1' on ~ ' .  This is well-known when ~X < oo. Choksi in [2] has 

pointed out that inverse limits also exist for infinite a-finite spaces, from which 

it follows that this construction also works when/~X = ~ .  Th exact formula- 

tion of the theorem that we need does not appear in [2] but can be deduced 

from Theorem 3.1 of [2] by standard methods (see, e.g. [4] Theorem 4.1, and 
the references cited in this paper), or from Theorem 2.2 of [2] by proceeding as 

in the proof of Theorem V.3.2 of [13~. However, we outline below a less 

technical proof. 

We refer to [13] for definitions concerning inverse systems. By Theorem 

V.3.2 of  [ 13], for any inverse system of  standard Borel spaces with consistent 

finite measures (Yk, ~ ,  zrk, vk) (where nk: Y ~  Yk-,) there exists a unique 
finite measure v' on its inverse limit Y'. Now i f p X  = ~ write X' = t,.J, >__ 0 X~, °) 

where X = I,_),>__0 X,, with/zX, < oo. For each fixed n consider the inverse 

system of consistent finite measures: 

(X. ,  U) "- ( T - ' X . ,  p)  "-- (T -2X . ,  p)  . . . .  , 

i.e., the system (Yk, ~k ,  rCk, Vk) where Yk = T - k X . ,  ~ = ~ ¢3 Y~, rc~ = T, 

v, = / t ,  for all k and fixed n. By the result just mentioned there exist finite 

measures /t" on (Xt. °), ~ '  n X.~°)). Now define p'A = Z..=o#;(A n X. ~°)) for 
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A E ~ ' .  This indeed gives a a-finite measure/~'  on (X', ~ ' )  such that  #'A (°) = 

#A, and thus T' is a measure preserving automorphism on (X', M', #'). 

Now we construct our invertible extension. Start with a nonsingular endo- 

morphism T o n  a a-finite s tandard Borel space (X, ~, /~) .  Define T*, X*,/~* as 

before. Now apply the Rohlin extension to this space to obtain a measure 

preserving automorphism T*' on (X*',#*').  (Note that even though X* is 

infinite a-finite t h e '  construction applies since T* is measure preserving.) We 

note that (X', M') and T' are well-defined as before. Now we define a measure 

on ~ ' .  For E E ~ '  let 

/z'E = Y, 2-n/~*'(((xi, y,): ( x i )EE& n - 1 < y o =  < n}). 
n_>_l 

We give an equivalent description of/~' that  will prove useful later. First define 

the projections 0 : X'  --- X a n d  ¢p : X * ' ~  X' by O((xi)) = Xo and ¢o((xi, Yi)) = (x,). 

Define a measure v equivalent to/~*' by 

vA = ~ 2-"#*'(A • ( (x , ,y~)EX*':n  -- 1 <yo=< n)). 
n > l  

Then clear ly/I 'E = v~0 - ~E for all E ~ ~ ' .  

LEMMA 9. The following diagram is commutative and for every A E ~3, 
p_A = It'O-~A. In particular, # 'X'  =/zX. 

T' : (X', IF) ~ (X', I~') 
o~ ~o 

T :  ( x , u ) ~ ( x , u )  

PROOF. The commutat iv i ty  is immediate.  Let A E ~ .  Then 

Now 

O-*A = ( ( x i ) e  X "  x o e A  ) = A (°). 

u,A(O) = y, 2 -"U* ' ( ( (x i ,  Yi) " (xi)eA(O) & n - 1 <Y0 =< n)) 
n > l  

" < n  2 2-"12*'({(x,,Yi) x o E A & n  -- 1 < Y 0 =  }) 
n ~ l  

Y, 2-"lt*'(((xi, yi)'(xo, yo)EA X (n -- 1, n])) 
n > l  

Y, 2 -"/z*'({A X (n - 1, n]) ~°)) 
n > l  
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= Y~ 2 -"it*(A × (n - 1, n] )  
n_>_l 

= # A .  

COROLLARY 3. For every A E ~ ,  

Hence every f E  L ~(X) lifts to f o 0 ~ L I(X'). 

REMARK 2. We have given two definitions for the measure It'. When 
(X, It, T) is a measure preserving system then g '  denotes the Rohlin extension 
obtained by taking inverse limits. In the nonsingular case It' denotes the 
measure given above. It follows from Lemma 9 that when the nonsingular 
endomorphism T happens to be measure preserving the second definition 
gives the same measure as the Rohlin definition. 

LEMMA 10. [ 12] I f  T is a conservative measure preserving endomorphism of  
(X, ~ ,  It) then T' is conservative. 

PROOF. Let f >  0 be an integrable function in X and put p = f o  0. Then 
f '  > 0 and integrable, and i fD is the dissipative part of T', since T' is a measure 
preserving automorphism the Hopf  decomposition theorem gives that 

But  D = D~ °) w h e r e  

D = t (x i )EX'"  k=0 ~ f'(T'k(X')) < ~ }  " 

Since T is conservative Do = ~ (mod 0). 

LEMMA 1 1. I f  the nonsingular endomorphism T is #-recurrent then T" is a 
conservative nonsingular automorphism on (X', ~ ' ,  It'). 

PROOF. Let v be the measure on X*' equivalent to It*' defined above. By 
Lemma 10, T*' is conservative nonsingular on (X*', It*'), hence on (X*', v). 
Then map tp : (X*', v ) ~ ( X ' ,  It') is a nonsingular measurable surjection such 
that ~oT*' = T'~o. Whence T' is conservative nonsingular on (X', ~ ' ,  It'). 

The proof  of the following lemma is essentially from [ 12]. 

o0 {x0 x: t 
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LEMMA 12. Let T be a conservative measure preserving endomorphism. I f  
E is T'-invariant then E is T-measurable, i.e., E ~ ~ .  

PROOF. We recall again that  ~ is a sub-a-algebra of  ~ '  and V~=o T " ~  ¢ = 

~ ' ,  T ' - ~ d  C ~¢, and T' is conservative. 

Let G E ~ '  with 0 < / t ' G  < o o  and E o = E  n G. Then T~-IEo=Eo, where 

Tb is the induced t ransformation on G. 

Since V~ Tb"(~¢ n G) = ~ '  n G, given e > 0, there exists F ~  T~"(M n G), 

for some n _-__ 0, such tha t /# (Eo~F)  < e. Therefore I~'(E~T~-"F) < e where 

T 6 - " F ~ ¢  ¢3 G. Thus E o ~ / N  G (rood 0). By taking a disjoint sequence G~ 

of  sets in ~ '  of  finite measure such that X'  = UG~ we get that  E ~ ~ / ( m o d  0). 

THEOREM 5. Let T be a nonsingular endomorphism of a a-finite standard 
Borel space (X, ~ ,  #). I f  T is g-recurrent ergodic then it has a conservative 
ergodic invertible natural extension T' on (X', ~ ' ,  lt'). 

PROOF. It has already been shown that T' is a conservative nonsingular 

automorphism. Consider the following commutat ive  diagram. 

T*' 0* 7"* 
X*' , X*' , X* , X* 

T' 0 T 
X' , X'  , X , X 

where 0*((xi, yi)) = (x0, Y0), n(x, y) = x,  and ~0 and 0 are as defined earlier. It is 

clear that all the maps commute  and ~o, 0, n, 0* are nonsingular surjections 

with respect to the usual measures (the measure on X'  is p '  --- v~o-1). Suppose 

now that A is T'-invariant. Then ~0-~A is T*'- invariant  and by L e m m a  12, 

q~-lA = B (°)= O*-~B for some B ~ :~* .  Since B = O*(q~-~A) then B = n - t B  o 

for some some Bo E ~ .  Now 

A = ~o oO*-lB = ~0 o 0*-bz- lBo = O-IBo =B~ °), 

and B0 must be T-invariant.  Since T is ergodic B0 = ~ or Bo = X (mad 0), 

which completes the proof. 
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